Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Med Virol ; 94(5): 2089-2101, 2022 05.
Article in English | MEDLINE | ID: covidwho-1626431

ABSTRACT

COVID-19 is a disease characterized by acute respiratory failure and is a major health problem worldwide. Here, we aimed to investigate the role of CD39 expression in Treg cell subsets in COVID-19 immunopathogenesis and its relationship to disease severity. One hundred and ninety COVID-19 patients (juveniles, adults) and 43 volunteers as healthy controls were enrolled in our study. Flow cytometric analysis was performed using a 10-color monoclonal antibody panel from peripheral blood samples. In adult patients, CD39+ Tregs increased with disease severity. In contrast, CD39+ Tregs were decreased in juvenile patients in an age-dependent manner. Overall, our study reveals an interesting profile of CD39-expressing Tregs in adult and juvenile cases of COVID-19. Our results provide a better understanding of the possible role of Tregs in the mechanism of immune response in COVID-19 cases.


Subject(s)
Apyrase , COVID-19 , T-Lymphocytes, Regulatory , Adult , Apyrase/biosynthesis , Apyrase/immunology , Apyrase/metabolism , COVID-19/immunology , COVID-19/metabolism , Forkhead Transcription Factors , Humans , Severity of Illness Index , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology
2.
Microb Pathog ; 153: 104779, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1062521

ABSTRACT

BACKGROUND: During viral infection, inhibitory receptors play a key role in regulating CD8 T-cell activity. The objective of this research was to investigate programmed cell death protein 1 (PD-1), T-cell immunoglobulin and mucin domain-containing protein-3 (TIM-3), and CD39 exhaustion markers in CD8 T cells of new coronavirus disease-2019 (COVID-19) patients. METHODS: A total of 44 patients with COVID-19 (17 subjects in a critical group and 27 patients in a non-critical group) and 14 healthy controls, who were admitted to Hospitals in Babol, were recruited to the study. In subjects' peripheral blood mononuclear cells (PBMCs), we compared the phenotype of CD8 T lymphocytes, expressing PD-1, TIM-3, or CD39, both alone and in various combinations. RESULTS: The findings showed that the percentage of CD8+ cells was significantly lower in patients. Critical and non-critical patients were more likely than healthy controls to have an escalated frequency of CD8+ TIM-3+, CD8+ CD39+, and CD8+ TIM-3+ CD39+ cells. No significant differences were observed between all groups in the CD8+ PD-1+ cell counts. There was also no difference between three groups regarding the counts of CD8+ TIM-3+ PD-1+, CD8+ PD-1+ CD39+, and CD8+ TIM-3+ PD-1+ CD39+ cells. The counts of non-exhausted cells were significantly lower in critical and non-critical individuals compared to the healthy individuals' value. CONCLUSION: Patients, infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), altered exhausted CD8 T lymphocytes with CD39 and TIM-3 exhaustion markers, which may account the dysregulated immune response found in COVID-19.


Subject(s)
Apyrase/biosynthesis , CD8-Positive T-Lymphocytes/immunology , COVID-19/pathology , Hepatitis A Virus Cellular Receptor 2/biosynthesis , Programmed Cell Death 1 Receptor/biosynthesis , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/analysis , Female , Humans , Iran , Lymphocyte Count , Male , Middle Aged , SARS-CoV-2/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL